
 STM32MP1 CubeMX Tutorial for OSD32MP15x
 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

1 Introduction

This application note will help to configure STM32CubeMX to work with the OSD32MP15x, the
STM32MP1 System-in-Package.

STM32CubeMX (commonly called just “CubeMX”) is a STMicroelectronics processor configuration tool
with an intuitive Graphical User Interface (GUI) that has helped programmers and embedded designers
configure their ST microcontrollers with ease. With the launch of STM32MP15x, the ST CubeMX tool has
been extended to support the MP1 microprocessor family as well, specifically the STM32MP15x, which
is integrated within the Octavo Systems OSD32MP15x SiP, the STM32MP1 System in Package. As a
result, previous ST microcontroller users can easily apply their knowledge and experience with CubeMX
to configure the OSD32MP15x. Through a step-by-step process, STM32CubeMX will help generate
initialization C code for the ARM® Cortex®-M4 core and partial Linux® Device Trees for ARM® Cortex®-A7
cores. Apart from code generation, CubeMX can also help perform power consumption estimation and
DDR testing.

Generating initialization code for the STM32MP1 using CubeMX involves configuring Pinout, Peripherals,
and Clocks. An example screenshot of the “Pinout & Configuration” window is shown in Figure 1.

This application note provides pre-configured CubeMX project files in the
OSD32MP15x_MinimalConfig.zip file. The minimal pinout, peripheral and clock configuration for the
OSD32MP1 is already completed in this project so that you can quickly get started with the
OSD32MP15x specific SiP device. You can use these configuration settings as a starting point to make
modifications for your custom design.

In addition, this app note will briefly describe the STM32MP1 CubeMX settings which you should and
should not modify for the OSD32MP15x. It will also point you to important documentation and user
manuals to assist you. The tutorial assumes that you are already familiar with the OSD32MP15x device
and the integrated peripherals and have a basic understanding of CubeMX. If not, please use the links in
Section 2 to get more information.

https://octavosystems.com/octavo_products/osd32mp15x/
https://octavosystems.com/octavo_products/osd32mp15x/

2
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

Figure 1 - CubeMX Pinout & Configuration Window

Notice: The information provided within this document is for informational use only. Octavo Systems
provides no guarantees or warranty to the information contained.

3
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

Table of Contents
1 Introduction .. 1

2 Prerequisites ... 4

3 Minimal CubeMX Project ... 5

3.1 Project Naming Conventions ... 5

3.2 STM32MP1 CubeMX Configuration for the Octavo Systems OSD32MP15x, the STM32MP1
System in Package (SiP) ... 5

3.2.1 Fixed Settings ... 5

3.2.2 Customizable Settings .. 6

3.3 CubeMX Project Manager ... 6

3.4 CubeMX Tools .. 7

4 Generating code using CubeMX ... 8

5 Flashing and upgrading SD card ... 8

6 Using the U-Boot Device Tree .. 11

7 Using the Trusted Firmware Device Tree ... 15

8 Using the Linux Device Tree ... 18

9 Transition from U-Boot to Linux Kernel ... 20

10 Resources ... 21

11 Revision History .. 22

4
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

2 Prerequisites

1. Download and install CubeMX 5.3.0:
https://www.st.com/en/development-tools/stm32cubemx.html#overview

2. Download OSD32MP15x_MinimalConfig.zip file:

https://octavosystems.com/files/osd32mp15x_minimalconfig/

3. Unzip the file and open the <OCTAVO PART NUMBER>_MinimalConfig project file
corresponding to your OSD32MP15x part number from CubeMX:

“File” → “Load Project” → Choose the <OCTAVO PART NUMBER>_MinimalConfig.ioc
file.

4. Background Information:

a) CubeMX User Manual:
https://www.st.com/resource/en/user_manual/dm00104712.pdf

b) STM32MP157x datasheet:

https://www.st.com/resource/en/datasheet/stm32mp157c.pdf

c) STM32MP157x Reference Manual:
https://www.st.com/resource/en/reference_manual/dm00327659.pdf

d) OSD32MP15x Datasheet

https://octavosystems.com/docs/osd32mp15x-datasheet/

e) Pin Mapping between STM32MP15x and OSD32MP15x:
https://octavosystems.com/app_notes/osd32mp15x-pin-mapping-to-stm32mp1/

https://www.st.com/en/development-tools/stm32cubemx.html#overview
https://octavosystems.com/files/osd32mp15x_minimalconfig/
https://www.st.com/resource/en/user_manual/dm00104712.pdf
https://www.st.com/resource/en/datasheet/stm32mp157c.pdf
https://www.st.com/resource/en/reference_manual/dm00327659.pdf
https://octavosystems.com/docs/osd32mp15x-datasheet/
https://octavosystems.com/app_notes/osd32mp15x-pin-mapping-to-stm32mp1/

5
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

3 Minimal CubeMX Project

The minimal pinout, peripheral and clock configuration for the OSD32MP157x is provided in the
CubeMX projects contained in the OSD32MP15x_MinimalConfig.zip file to help you quickly get started
with OSD32MP15x. The projects were created using CubeMX v5.3.0.

3.1 Project Naming Conventions

The files within the OSD32MP15x_MinimalConfig.zip file follow the naming convention:
“<OCTAVO PART NUMBER>_MinimalConfig.ioc”

For the remainder of the document, we will refer to these files collectively as “minimal CubeMX
Project”. Additionally, when <OCTAVO PART NUMBER> appears in the name of a file, we will just use the
abbreviated <DEVICE> to refer to this part of the name.

The OSD32MP15x_MinimalConfig.zip will only contain CubeMX projects for commercial part numbers.
Since the functionality of OSD32MP15x industrial parts are same as that of their commercial counter-
parts, the CubeMX project and associated device tree files for a commercial part number can be used for
the corresponding industrial part number as well.

3.2 STM32MP1 CubeMX Configuration for the Octavo Systems OSD32MP15x, the
STM32MP1 System in Package (SiP)

The CubeMX configuration that is already available for OSD32MP157C SiP as part of <OCTAVO PART
NUMBER>_MinimalConfig.ioc project can classified into two groups:

• Fixed Settings

• Customizable Settings

These settings are discussed in the following sections.

3.2.1 Fixed Settings

Since OSD32MP15x SiP integrates several components along with the STM32MP15x processor, the
following CubeMX settings correspond to components within the SiP that are fixed and therefore these
settings should NOT be changed. The fixed settings are also part number specific. Make sure to use the
CubeMX project that corresponds to the exact part number of OSD32MP15x device you are using in
your design. The fixed settings in the minimal CubeMX Project are:

• DDR
o DDR Mode and Configuration settings in “System Core”

• GPIO
o DDR Pin Configuration settings in “GPIO”
o I2C4_SCL/I2C4_SDA Pin Configuration settings (enables communication between

processor and PMIC)

6
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

o UART4 Pin Configuration settings (enables serial debug console)
o PC13 is reserved for PMIC_WAKEUP
o PC14-OSC32_IN, PC15-OSC32_OUT and PH0_OSC_IN pins are reserved for clock circuitry

• RCC
o RCC Mode and Configuration settings in “System Core”

• RTC
o RTC Mode and Configuration settings in “Timers”

• Clock Configuration
o The clock configuration of the processor in the “Clock Configuration” tab

• I2C4
o I2C4 Mode and Configuration settings in “Connectivity”

• UART4
o UART4 Mode and Configuration settings in “Connectivity”. UART4 is used as the default

serial console interface by the processor.

• SDMMC1
o SDMMC1 Mode and Configuration settings in “Connectivity”.

3.2.2 Customizable Settings

All the settings that are not part of the Fixed Settings can be customized to suit your design needs. Some
commonly customized settings are:

• GPIO – except reserved pins mentioned above

• DMA

• GIC

• IPCC

• NVIC

• I2Cx

• UARTx

• SPIx

• USBx

• BSEC

• ETZPC

• RNG1

• OPENAMP

See the Octavo Systems app note: Pin Mapping Between OSD32MP15x , the STM32MP1, and Other
Integrated Devices, to understand how the pins of the discrete STM32MP157x processor are mapped to
the OSD32MP157x System in Package (SiP).

3.3 CubeMX Project Manager

The CubeMX Project Manager can generate partial Linux® Device Trees for the ARM® Cortex®-A7 cores.
It also can generate initialization C code for the ARM® Cortex®-M4 core for several tool-chains and IDEs.
You are free to use any supported tool-chain. However, the M4 initialization C code of the minimal
CubeMX Project has only been tested on the System Workbench for STM32 IDE (i.e., SW4STM32) with

https://octavosystems.com/app_notes/osd32mp15x-pin-mapping-to-stm32mp1/
https://octavosystems.com/app_notes/osd32mp15x-pin-mapping-to-stm32mp1/

7
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

the STM32Cube FW_MP1 V1.0.1 firmware package. The partial device tree output files of the minimal
CubeMX Project have been tested on the OSD32MP157C running OpenSTLinux Developer Package
v1.0.0.

To learn more about these tools, see section 4.8 of the CubeMX manual.

3.4 CubeMX Tools

CubeMX features additional developmental tools like the Power Consumption Calculator and DDR Test
Suite. These tools can also help you make your design process easier and do not require any
modifications to use with the OSD32MP15x. The CubeMX Tools window is shown in Figure 2.

Figure 2 - CubeMX Tools

To learn more about these tools, see Sections 5.1 and 5.2 of the CubeMX manual.

Caveat:
CubeMX does not support the configuration/management of all the peripherals through its GUI (as
indicated by WARNINGS in the GUI). Hence, it is necessary to manually inspect and modify/add to
the device tree once it has been generated by CubeMX.

To learn more about Linux Device Trees, see OSD335x Lesson 2: Linux Device Tree.

https://www.st.com/resource/en/user_manual/dm00104712.pdf
https://www.st.com/resource/en/user_manual/dm00104712.pdf
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/

8
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

4 Generating code using CubeMX

As mentioned before, CubeMX is capable of generating initialization code for both the Dual Core Cortex-
A7 microprocessor cores and M4 microcontroller core. Before proceeding to generate the code, make
sure the Pinout & Configuration, Clock Configuration and Project settings match your expectations.

To generate initialization code for A7 core and M4 core:

• Press the GENERATE CODE button at the top right corner of the CubeMX GUI.

• The generated device tree files for the A7 cores will be available under: <CubeMX project
directory>/<CubeMX project name>/DeviceTree/<Device name> directory. In this directory,
you should be able to see three other directories kernel, tf-a and u-boot (more information
about using these device tree files is given in the next section):

o kernel directory will contain device tree files for the linux kernel.
o u-boot directory will contain device tree files for the secure and non-secure boot chains

of u-boot.
o tf-a will contain device trees files for the secure First Stage Boot Loader (FSBL) of trusted

boot chain.

• Similar to A7 core, the generated M4 initialization code (i.e., SW4STM32 IDE project) will be
available under your CubeMX project directory. To make use of the generated code, first
download and install the System Workbench for STM32 (also called SW4STM32) IDE. Once
installed, open the IDE, go to File > Import > Existing Projects into Workspace > Browse and
select the SW4STM32 directory (which was generated by CubeMX) under your CubeMX project
directory > click Finish.

• Once the initialization project code is imported, you can modify it/add to it to suit your design
requirements and build/deploy it on the M4 core of your OSD32MP15x using the same IDE. To
learn more about SW4STM32 IDE, see Overview and Documentation of SW4STM32 at
OpenSTM32 Community (registration and login required).

5 Flashing and upgrading SD card

Before you can use the custom device tree files generated from CubeMX, you need to first flash a SD
card with OpenSTLinux Starter Package. The starter package is only intended to demonstrate the
capabilities of the DK2 board using demo projects. It does not support custom modifications to Linux
kernel. Hence, it is also necessary to upgrade the Starter package to Developer package before
proceeding to the next section. To flash and upgrade the SD card, follow the below steps:

Step 1: Flashing the SD Card

Caveat:

CubeMX automatically chooses the CubeMX project file directory as the default directory for
generated device tree files and SW4STM32 IDE project files. The root directory for the generated
code cannot be manually set.

http://www.openstm32.org/System%2BWorkbench%2Bfor%2BSTM32
http://www.openstm32.org/System%2BWorkbench%2Bfor%2BSTM32

9
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

To use a custom Device Tree, it is necessary to upgrade OpenSTLinux Starter Package to Developer
Package. To do this, please complete the following steps:

i. Install the STM32CubeProgrammer tool on a host Ubuntu computer using the instructions in
Section 5.1 of the ST Starter Package Wiki page.

ii. Prepare the USB serial link on the host Ubuntu computer using the instructions in Section 5.2
of ST Starter Package Wiki page.

iii. Download the Starter Package image on the host Ubuntu computer and flash your SD card
with it using instructions given in Section 6 of ST Starter Package Wiki page.

iv. Boot the board and check the boot sequence using the instructions given in Section 7 and 8 of
the ST Starter Package Wiki page. The UART4 serial console should lead you to a login screen
at the end of boot messages as shown in Figure 3 and the DK2 LCD screen should display a
demo apps page as shown in Figure 4.

Figure 3 - OSD32MP157x Starter Pack Login Screen

https://wiki.st.com/stm32mpu/wiki/STM32MP15_Discovery_kits_-_Starter_Package
https://wiki.st.com/stm32mpu/wiki/STM32MP15_Discovery_kits_-_Starter_Package
https://wiki.st.com/stm32mpu/wiki/STM32MP15_Discovery_kits_-_Starter_Package
https://wiki.st.com/stm32mpu/wiki/STM32MP15_Discovery_kits_-_Starter_Package

10
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

Figure 4 Demo Apps screen on DK2 LCD panel (© STMicorelectronics)

Step 2: Upgrading to the Developer Package

Upgrading to the Developer Package of the OpenST Linux distribution involves installing an SDK for
cross-development on the host Ubuntu computer and then installing the Developer Linux Kernel on the
SD card. To do this, please complete the following steps:

i. Install the SDK on the host Ubuntu computer using the instructions given in Section 5.1 of the
ST Developer Wiki Page.

ii. Install the Developer Package Linux Kernel on the SD card using the instructions given in
Section 5.2 of the ST Developer Wiki Page (see Caveat below).

iii. Once the installation of Developer Linux Kernel finishes, reboot the board to see if there are
any errors in the boot messages. If not, proceed to the next step.

Caveat:

Please follow the directory structure recommended under “proposition to organize the tools’
directory” to facilitate the steps in this guide. The instructions assume you are using the
recommended directory structure. Additionally:

• Make sure the PATH variable is set to the install directory of the STM32CubeProgrammer as
recommended in the instructions. You may get “STM32_Programmer_CLI command not
found” errors if the path variable is not set properly.

• The BOOT switches on the back of DK2 board should be modified as instructed before and
after SD card flashing process.

https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package
https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package
https://wiki.st.com/stm32mpu/wiki/Example_of_directory_structure_for_Packages
https://wiki.st.com/stm32mpu/wiki/Example_of_directory_structure_for_Packages

11
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

6 Using the U-Boot Device Tree

This section will guide you through the process of building a custom U-Boot that uses the custom U-Boot
Device Tree generated from the minimal CubeMX project. The following steps assume that you are using
the STM32MP157C-DK2 development platform from ST. It will be referred to as the “DK2 board” here
after. The process of loading a custom U-Boot Device Tree should be similar for your custom design.

The U-Boot device tree generated by CubeMX consists of 3 files (more info on this topic here):

• A copy of the Linux device tree as the main .dts file - stm32mp157c-<DEVICE>_minimalconfig-
mx.dts

• A .dtsi include file with U-Boot specific configuration – stm32mp157c-<DEVICE>_minimalconfig-
mx-u-boot.dtsi

• A header file for DDR configuration - stm32mp15-mx.h

The steps to build U-boot using a custom Device Tree are as follows:

Step 1: Download and install U-Boot Developer Package on Host Computer

Before making custom edits to the U-Boot device tree or its source code, we need to first download and
install U-Boot Developer Package on Host Ubuntu computer. To do so, follow the steps under section
5.3.1 of ST Developer Package Wiki page.

Step 2: Build and deploy default U-Boot

The U-Boot developer package provided by ST supports three boot chains (more on this topic here):

• Basic boot chain – First Stage Boot Loader (FSBL) is U-Boot SPL (Secondary Program Loader) and
Second Stage Boot Loader (SSBL) is U-Boot.

• Trusted boot chain – FSBL is Trusted Firmware-A (TF-A) and SSBL is U-Boot. The Starter
OpenSTLinux image uses this boot chain by default.

• OP-TEE – Secure OS, i.e. a Trusted Execution Environment. This boot chain is beyond the scope
of this application note but you can learn more about it here.

Caveat:

The Linux Kernel build process discussed under section 5.2 of the ST Developer Wiki Page proposes
two ways to build to kernel:

• Compile and install in a build directory

• Compile and install in the current source code directory
We recommend using the first method (i.e., using a separate build directory) to enable better
flexibility while making modifications to the build.

https://wiki.st.com/stm32mpu/wiki/STM32MP15_device_tree
https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package
https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview
https://wiki.st.com/stm32mpu/wiki/OP-TEE_overview
https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package

12
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

It is recommended to test U-Boot in its default form before making modifications to it. Build and deploy
U-Boot using the steps given under section 5.3.2 of ST Developer Package Wiki page. In the compilation
step, compile for several default targets using make -f $PWD/../Makefile.sdk all.

• Test the basic tool chain by using the FSBL: u-boot-spl.stm32-stm32mp157c-dk2-basic and SSBL:
u-boot-stm32mp157c-dk2-basic.img under build-basic directory. The boot log from the UART4
serial console for basic tool chain should look similar to Figure 7.

• Test the trusted boot chain by using FSBL: tf-a-stm32mp157c-dk2-trusted.stm32 which is
provided by TF-A Dev package (see Section 7) and SSBL: u-boot-stm32mp157c-dk2-
trusted.stm32 from build-trusted directory. The boot log for trusted boot chain should look like
Figure 9.

Step 3: Modifying the default U-Boot source code

You can validate your toolchain and U-Boot build process by adding custom boot log text to the U-Boot
source code using the example steps given under Section 7 of How to Cross-compile ST Wiki package.
After modifying, building and deploying U-Boot on your board, the boot log should look similar to Figure
5. Please note that the actual phrase used in the example picture is different from what is suggested in
the Wiki page. Feel free to put in any phrase you desire.

Figure 5 - Adding custom boot messages to basic boot chain log

Step 4: Building U-Boot from Custom Device Trees

i. Copy the Custom U-Boot Device Tree source files (i.e., stm32mp157c-
<DEVICE>_minimalconfig-mx.dts, stm32mp157c-<DEVICE>_minimalconfig-mx-u-boot.dtsi
and stm32mp15-mx.h) to the <U-Boot source code directory>/arch/arm/dts/ directory of the
host Ubuntu computer.

ii. Navigate to U-Boot source directory using the command:
cd <U-Boot source directory>

iii. Build U-Boot using the commands:

https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package
https://wiki.st.com/stm32mpu/wiki/How_to_cross-compile_with_the_Developer_Package#Modifying_the_U-Boot

13
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

o If running make for the first time, use: make -f $PWD/../Makefile.sdk all

o After first time, use: make -f $PWD/../Makefile.sdk all DEVICE_TREE="stm32mp157c-
<DEVICE>_minimalconfig-mx"

iv. Navigate one step above in the directory hierarchy from <U-Boot source code directory> using
the command cd ../ and view the contents using the ls command. The U-Boot build files for
different boot chains will be available under build-basic, build-trusted and build-optee
directories.

Step 5a: Configuring SD card to use custom U-Boot (Basic boot chain)

i. Navigate to basic tool chain directory:
cd build-basic

ii. Insert the SD card (pre-flashed with OpenSTLinux Developer image built as part of Section 5)
to the host Ubuntu computer.

iii. Observe the partitions of the SD card by using the command: ls -l /dev/disk/by-partlabel/.
The part labels should look like Figure 6.

Figure 6 - SD card partition labels

iv. U-Boot SPL (u-boot-spl.stm32-*) MUST be copied on the dedicated partition named "fsbl1" of
the SD card using the command:
dd if=u-boot-spl.stm32-stm32mp157c-<DEVICE>_minimalconfig-mx-basic of=/dev/sdb1
bs=1M conv=fdatasync

v. U-Boot image (u-boot*.img) MUST be copied on the dedicated partition named "ssbl" of the
SD card using the command:
dd if=u-boot-stm32mp157c-<DEVICE>_minimalconfig-mx-basic.img of=/dev/sdb3 bs=1M
conv=fdatasync

vi. Safely eject the SD card from the host computer once the transfer is complete.
vii. Insert the SD card back into the DK2 board. Power the board. The boot log on UART4 console

for basic tool chain should look similar to Figure 7.

14
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

Figure 7 - Basic Boot Chain Boot Log

Step 5b: Configuring SD card to use custom U-Boot (Trusted boot chain)

i. Navigate to trusted (TF-A) tool chain directory:
cd build-trusted

ii. Insert the SD card (pre-flashed with OpenSTLinux Developer image developed as part of
Section 5) to the host Ubuntu computer.

iii. Observe the partitions of the SD card by using the command: ls -l /dev/disk/by-partlabel/.
The part labels should look like Figure 6.

iv. In this boot chain, the First Stage Boot Loader (FSBL) is provided by TF-A (see Section 7). The
U-Boot binary (u-boot*.stm32) acts as Second Stage Boot Loader (SSBL). Copy only the U-Boot
binary (u-boot*.stm32) to the dedicated partition named "ssbl" of the SD card using the
command:
dd if=u-boot-stm32mp157c-<DEVICE>_minimalconfig-mx-trusted.stm32 of=/dev/sdb3
bs=1M conv=fdatasync

v. See Section 7, step 5 for instructions to load FSBL.

Caveat:

1. In the case of secure boot, since FSBL uses TF-A device tree and SSBL uses U-Boot device
tree, make sure the compatible property of both these device trees are identical.
Otherwise, the boot sequence may not transition from FSBL to SSBL.

2. Irrespective of the boot chain being used (basic or secure), a directory whose name
corresponds to the compatible property of U-Boot should exist in the bootfs partition of SD
card. U-Boot will use boot parameters defined in this directory to boot linux kernel. If U-
boot fails to find this directory, the boot sequence will halt and will not transition to linux
kernel. See section 9 for more information.

15
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

7 Using the Trusted Firmware Device Tree

This section will guide you through the process of building a custom Trusted Firmware A (TF-A) that uses
the custom TF-A Device Tree generated from the minimal CubeMX project. The following steps assume
that you are using the STM32MP157C-DK2 development platform from ST. It will be referred to as the
“DK2 board” here after. The process of loading a custom TF-A Device Tree should be similar for your
custom design.

The TF-A Device Tree generated by CubeMX consists of 2 files:

• A TF-A device tree file - stm32mp157c-<DEVICE>_minimalconfig-mx.dts

• A header file for DDR configuration - stm32mp15-mx.h

The steps to build TF-A using a custom Device Tree are as follows:

Step 1: Download and install TF-A Developer Package on Host Computer

Before making custom edits to the TF-A device tree or its source code, we need to first download and
install TF-A Developer Package on a Host Ubuntu computer. To do so, follow the steps under section
5.4.1 of ST Developer Package Wiki page.

Step 2: Build and deploy default TF-A

The TF-A developer package provided by ST supports two toolchains:

• Trusted boot chain – FSBL is Trusted Firmware-A (TF-A) and SSBL is U-Boot. This is the default
solution provided by ST.

• OP-TEE – Secure OS, i.e. a Trusted Execution Environment. This is beyond the scope of this
application note but you can learn more about it here.

It is recommended to build and deploy TF-A in its default form and test it before making modifications
to it using the steps given under section 5.4.2 of ST Developer Package Wiki page. In the compilation
step, compile for several default targets using make -f $PWD/../Makefile.sdk all.

Test the trusted boot chain by using the FSBL: tf-a-stm32mp157c-<DEVICE>_minimalconfig-mx-
trusted.stm32 from build-trusted directory. The SSBL: u-boot-stm32mp157c-dk2-trusted.stm32 is
provided by U-Boot Developer Package (see Section 6). The boot log for trusted boot chain should look
similar to Figure 9.

Step 3: Modifying the default TF-A source code

You can validate your toolchain and TF-A build process by adding custom log text to the TF-A source
code using the example steps given under Section 8 of How to Cross-compile ST Wiki package. After
modifying, building and deploying TF-A on your board, the boot log should look similar to Figure 8Error!
Reference source not found.. Please note that the actual phrase used in the example picture below is
different from what is suggested in the Wiki page. Feel free to put in any phrase you desire.

https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package
https://wiki.st.com/stm32mpu/wiki/OP-TEE_overview
https://wiki.st.com/stm32mpu/wiki/STM32MP1_Developer_Package
https://wiki.st.com/stm32mpu/wiki/How_to_cross-compile_with_the_Developer_Package#Modifying_the_TF-A

16
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

Figure 8 Adding custom boot messages to trusted boot chain log

Step 4: Building TF-A using Custom Device Trees

i. Copy the Custom TF-A Device Tree source files (i.e., stm32mp157c-<DEVICE>_minimalconfig-
mx.dts and stm32mp15-mx.h) to the <TF-A source code directory>/fdts/ directory of the host
Ubuntu computer.

ii. Navigate to TF-A source directory using the command:
cd <TF-A source directory>

iii. Build TF-A using the commands:
o If running make for the first time, use: make -f $PWD/../Makefile.sdk all

o After first time, use: make -f $PWD/../Makefile.sdk all DEVICE_TREE="stm32mp157c-

<DEVICE>_minimalconfig-mx"

iv. Navigate one step above <TF-A source directory> in the directory hierarchy using the
command cd ../ and view the contents using ls command. The build files of different boot
chains will be available under build-trusted and build-optee directories.

Step 5: Configuring SD card to use the custom TF-A (Trusted boot chain)

i. Navigate to trusted (TF-A) boot chain directory:
cd <TF-A source directory>/../build-trusted

ii. Insert the SD card (pre-flashed with OpenSTLinux Developer image developed as part of
Section 5) to the host Ubuntu computer.

iii. Observe the partitions of the SD card by using the command: ls -l /dev/disk/by-partlabel/.
The part labels should look like Figure 6.

iv. In this boot chain, only the First Stage Boot Loader (FSBL) is provided by TF-A. The SSBL is
provided by U-Boot (see step 5b of Section 6). Copy only the binary (tf-a-*.stm32) to the
dedicated partition named "fsbl" of the SD card using the command:
dd if=tf-a-stm32mp157c-<DEVICE>_minimalconfig-mx-trusted.stm32 of=/dev/sdb1 bs=1M
conv=fdatasync

v. Safely eject the SD card from the host computer once the transfer is complete.
vi. Insert the SD card back into the DK2 board. Power the board. The boot log on UART4 console for

the trusted tool chain should look like Figure 9.

17
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

Figure 9 - Trusted Boot Chain Boot Log

18
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

8 Using the Linux Device Tree

This section will guide you through the process of how to use the Linux Device Tree generated from the
minimal CubeMX project. The following steps assume that you are using the STM32MP157C-DK2
development platform from ST. It will be referred to as the “DK2 board” here after. The process of
loading a custom Linux Device Tree should be similar for your custom design.

The Linux device tree generated by CubeMX consists of only one file (more info on this topic here):
stm32mp157c-<DEVICE>_minimalconfig-mx.dts. The steps to build a custom OpenSTLinux Device Tree
are as follows:

Step 1: Modifying the default Device Tree

Before replacing the default Device Tree of DK2 board (i.e., stm32mp157c-dk2.dtb) with a custom
Device Tree, we will first modify the current device tree, re-compile the device tree, and verify the
expected changes occurred. To do this, please complete the steps in Section 4 of the Cross-compile with
Developer Package Wiki Page. This process will change the default status of the on-board Green User
LED on power up. By first modifying the existing Device Tree, you will be able to validate your tool chain
setup and compilation procedure.

Step 2: Building a Custom Device Tree

To build your custom device tree, please complete the following steps:

i. Copy the custom Device Tree source file (e.g., stm32mp157c-<DEVICE>_minimalconfig-
mx.dts) to the <kernel source code directory>/arch/arm/boot/dts/ directory of the host
Ubuntu computer.

ii. Change to the Linux kernel build directory using the command:
cd <Linux kernel build directory>

iii. Compile the device tree (2 methods):

• make stm32mp157c-<DEVICE>_minimalconfig-mx (See Caveat below)
OR

Caveat:

1. In the case of secure boot, since FSBL uses TF-A device tree and SSBL uses U-Boot device
tree, make sure the compatible property of both these device trees are identical.
Otherwise, the boot sequence may not transition from FSBL to SSBL.

2. Irrespective of the boot chain being used (basic or secure), a directory whose name
corresponds to the compatible property of U-Boot should exist in the bootfs partition of SD
card. U-Boot will use boot parameters defined in this directory to boot linux kernel. If U-
boot fails to find this directory, the boot sequence will halt and will not transition to linux
kernel. See section 9 for more information.

https://wiki.st.com/stm32mpu/wiki/STM32MP15_device_tree
https://wiki.st.com/stm32mpu/wiki/How_to_cross-compile_with_the_Developer_Package
https://wiki.st.com/stm32mpu/wiki/How_to_cross-compile_with_the_Developer_Package

19
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

• Add the device tree name to the Makefile under <kernel source code
directory>/arch/arm/boot/dts/

• Then, navigate back to <kernel source code directory> and execute the command
make dtbs

iv. Connect the SD card to the host computer using an SD card reader. You should be able to see
all the different partitions of SD card (bootfs, userfs, rootfs, vendorfs) appear under
/media/<username_of_ machine>.

v. Copy the newly built Device Tree blob (*.dtb) file to the /media/<username_of_
machine>/bootfs directory of the SD card (see Perk below):
cp <Linux kernel build directory>/arch/arm/boot/dts/stm32mp157c-
<DEVICE>_minimalconfig-mx.dtb media/<username_of_ machine>/bootfs/

Step 3: Pointing U-Boot to the Custom Device Tree:

The final step to use the custom Device Tree is to point U-Boot to the custom device tree. To do this, go
through the instructions in section 9.

Caveat:

You should look at all the Device Tree nodes automatically generated by CubeMX to ensure the
generated nodes reflect the configuration we have specified in the CubeMX GUI. For example,
stm32mp157c-<DEVICE>_minimalconfig-mx.dts has a sound node which is not linked to any other
node. Even though no multimedia/sound interfaces are initialized in the CubeMX GUI, the sound
node appears and must be commented out using multi-line comments as shown below:

/*
<sound node entries>
*/

Building stm32mp157c-<DEVICE>_minimalconfig-mx.dts without commenting the sound node may
result in “Reference to non-existent node or label” errors.

Perk:

While trying to write to bootfs directory, you may have to use sudo or super user privileges to
modify permissions of bootfs directory since it may be write protected by default.

20
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

9 Transition from U-Boot to Linux Kernel

The boot sequence of Linux on OSD32MP157C begins with the ROM code, followed by First Stage Boot
Loader (FSBL), Second Stage Boot Loader (SSBL) and Linux Kernel as described here. Irrespective of
which boot chain is used (Basic or Secure), once U-Boot finishes its boot sequence (of FSBL and SSBL), it
looks for a particular directory in /bootfs partition of SD card corresponding to the compatible device
defined using compatible property in the custom U-Boot Device Tree.

Once this directory is found, a file named extlinux.conf in the directory is supposed to provide
information about the linux kernel device tree that needs to be loaded along with other information. If
this directory is not configured properly or if the directory is not found, the boot sequence will halt.
Hence it is essential to configure this directory properly. To do so, follow the below steps:

i. Connect the SD card to the host computer using an SD card reader. You should be able to see
all the different partitions of SD card (bootfs, userfs, rootfs, vendorfs) appear under
/media/<username_of_ machine>.

ii. Using the command line of the host PC, navigate to /media/bootfs directory, create
mmc0_stm32mp157c-<DEVICE>_minimalconfig-mx_extlinux directory (it may be necessary
to change the permissions of bootfs directory using chmod) and create the extlinux.conf file
inside it using the commands:

cd /media/bootfs
sudo chmod 777 bootfs
mkdir mmc0_stm32mp157c-<DEVICE>_minimalconfig-mx_extlinux
vi extlinux.conf

iii. Populate extlinux.conf file with the following content to declare the device tree that U-Boot
needs to use while booting up (device tree name is declared using FDT tag, see Figure 10):

MENU BACKGROUND ../splash.bmp
TIMEOUT 20
DEFAULT stm32mp157c-<DEVICE>_minimalconfig-mx-sdcard
LABEL stm32mp157c-<DEVICE>_minimalconfig-mx-sdcard

 KERNEL /uImage
FDT /stm32mp157c-<DEVICE>_minimalconfig-mx.dtb
APPEND root=/dev/mmcblk0p6 rootwait rw console=ttySTM0,115200

Figure 10 - Content of extlinux.conf file

iv. Save the file and quit vi editor by pressing the Esc key, typing in “:wq”, and pressing the Enter

key.

https://wiki.st.com/stm32mpu/wiki/Boot_chains_overview

21
 STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC
Copyright 2019

v. Safely eject the SD card from the host PC and insert it back into the DK2 board.
vi. Power the board. Once the board starts rebooting, in the UART4 serial console, you should be

able to see the lines shown in Figure 11 (highlighted). These lines indicate the device tree file
has been successfully loaded.

Figure 11 - Boot Log showing which .dtb file is being loaded (highlighted)

10 Resources

• Octavo Systems OSD32MP15x Datasheet
https://octavosystems.com/docs/osd32mp15x-datasheet/

• Octavo Systems Application Note: Pin Mapping Between OSD32MP15x , the STM32MP1, and
Other Integrated Devices
https://octavosystems.com/app_notes/osd32mp15x-pin-mapping-to-stm32mp1/

• Octavo Systems Linux Device Tree Application Note
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-
linux-boot/linux-device-tree/

• STMicroelectronics Support Community for the STM32MP157
https://community.st.com/s/topic/0TO0X0000003u2LWAQ/stm32mp1

https://octavosystems.com/docs/osd32mp15x-datasheet/
https://octavosystems.com/app_notes/osd32mp15x-pin-mapping-to-stm32mp1/
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/
https://octavosystems.com/app_notes/osd335x-design-tutorial/osd335x-lesson-2-minimal-linux-boot/linux-device-tree/
https://community.st.com/s/topic/0TO0X0000003u2LWAQ/stm32mp1

22
STM32MP1 CubeMX Tutorial for OSD32MP15x

 Rev.2 8/20/2019

Octavo Systems LLC

Copyright 2019

• Octavo Systems Support Forums
https://octavosystems.com/forums/

If you have any additional questions using STM32MP1 CubeMX with OSD32MP15x, please contact us
and work directly with our engineers! https://octavosystems.com/contact/.

11 Revision History

Revision Number Revision Date Changes Author

1 6/11/2019 Initial Release

Eshtaartha Basu

2 8/20/2019 Revised Release Eshtaartha Basu

https://octavosystems.com/forums/
https://octavosystems.com/contact/
https://octavosystems.com/contact/

