
 OSD335x Lesson 2: Linux Device Tree
Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

1 Linux Device Tree

1.1 Introduction

Most modern general-purpose computers, like a desktop or laptop, will consist of
several peripherals connected to a main processor through a bus such as PCI, USB,
etc. An operating system, such as Windows or Linux, running on the computer can
discover or learn about the connected peripherals through enumeration. Enumeration
is a process through which the OS can enquire and receive information, such as the
type of the device, the manufacturer, or the device configuration, about all the
devices connected to a given bus. Once the OS gathers information about a device, it
can load the appropriate driver for the device. However, this is not the case when it
comes to most embedded systems.

In embedded systems, many peripherals are connected to the main processor with
busses like I2C, SPI, and UART, which do not support enumeration. Therefore, when
an embedded system uses an operating system, such as Linux, it is necessary to
convey the hardware configuration of the system, i.e. all the information about the
connected peripherals, to the OS in a standard form. The most common way to do this
in Linux is to use a device tree. A device tree is a tree data structure that describes
the hardware configuration of the system to the Linux operating system. During boot,
the Linux kernel will use the information in the device tree to recognize, load
appropriate drivers and manage the hardware devices in the system.

This article will help you get started with Linux device trees by introducing the
structure of device trees, describing some properties of device trees and showing you
how to modify an existing device tree for your custom hardware configuration.

Perk:

Devices which use buses that support enumeration do not need to be included in
the device tree. For example, devices that are connected to a USB Host port do
not need to be included in the device tree, since the USB bus protocol supports
enumeration. Similarly, all devices that are connected to an I2C bus must be
included in the device tree, since the I2C bus protocol does not support
enumeration.

2
 OSD335x Lesson 2: Linux Device Tree

Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

1.2 Device Tree Structure and Properties
A Linux device tree begins from a root node (i.e. the Tree Root) and will consist of a
level of child nodes and one or more levels of children nodes. Each child node
represents a hardware component of the micro-processor. For example, in the
OSD335x, each child node represents a component of the AM335x processor, such as
the CPU, an I2C peripheral, etc. Each children node represents a sub-component of a
child node or a device attached to the child node. For example, in the OSD335x, the
TPS65217C PMIC is attached to the I2C0 peripheral bus and appears as a children node
under the I2C0 child node. Each node consists of property-value pairs that describe
the hardware of the node. Each child node or children node can have only one parent
and the root node has no parent. A block diagram of a simple device tree structure is
shown in Figure 1.

Figure 1 Block diagram of a simple device tree structure

In the above picture, you can see the parent-child relationship that exists between
the child and children nodes. For example, all CPU cores are grouped as children
nodes under CPU child node. Similarly, all I2C devices on a given I2C bus are grouped
as children under that I2C node.

Perk:

As mentioned above, a parent-child relationship exists between child and children
nodes. Although it is counter intuitive to call parent node a child node and child
node a children node, this was done to match the terminology used in the official
device tree documentation.

3
OSD335x Lesson 2: Linux Device Tree
Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

To express these relationships, the Linux device tree has a specific syntax and
structure that should be followed to ensure a device tree works as intended. Let’s
look at a simple device tree template (Figure 2) that shows the generic syntax of the
root node, child nodes, children nodes and property-value pairs.

Figure 2 Simple Device Tree Template (© Thomas Petazzoni, Device Tree for Dummies)

In the above figure:

• node@0 and node@1 are child nodes.
• child-node@0 and child-node@1 are children nodes of their respective child

nodes.
• node1 is an easy to remember label of node@1.
• a-string-property, a-string-list-property etc., are properties that are used to

describe the child and children nodes.
• <&node1> is a phandle (i.e. a reference to node1 from node@0).

The official Device Tree Specification can be found here (this article will refer to
information from version v0.2). A more detailed explanation of the device tree
structure and basic concepts is available on the Device Tree Usage webpage. Please
make sure you are familiar with these two documents before proceeding.

4
 OSD335x Lesson 2: Linux Device Tree

Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

Now that the structure and the syntax of a device tree is clearer, the next question
is: what property-value pairs should be used to describe a particular component and
where can that information be found? The answer can be found in Device Tree
Bindings. The properties that are necessary to describe a particular component in the
device tree depends on the requirements of the Linux driver, or kernel module, for
that component. All the required properties must be supplied to ensure that the Linux
kernel recognizes the component properly and loads the appropriate drivers for that
component. The Device Tree Bindings for a particular hardware device will give you
this information. Therefore, it is essential to find the right Device Tree Bindings
information for your component. More supporting documentation about device tree
bindings can be found on the Device Tree Reference webpage.

As an example of Device Tree Bindings, the Lesson 2 board has a peripheral header
that supports MikroElektronika Click Boards. To use a MPU 9DOF Click that has MPU-
9150 9-axis motion tracking component, the appropriate information must be added
to the device tree. This Click communicates with the host using I2C and has a single
interrupt line to the processor. The device tree bindings for this component can be
found here. Based on this, the following entry would be added to the device tree as a
children node under the appropriate I2C child node:

mpu9150@69 {
 compatible = "invensense,mpu9150";
 reg = <0x69> ;
 interrupt-parent = <&gpio0> ;
 interrupts = <23 1> ;
};	

The unit address (i.e. the @69 after the mpu9150) and reg values are both 69
because the MPU 9DOF Click’s address on the I2C bus is 0x69. The INT pin of the
peripheral header, which is used for interrupts from the MPU 9DOF Click, is connected
to the GPMC_AD9 pin of the OSD335x (which is the GPMC_AD9 pin of AM335x, see the
Lesson 2 board schematics for more information). The GPMC_AD9 pin is also available
to the system as bit 23 in GPIO bank 0 (see the Pin Attributes section of AM335x
datasheet). Hence, the interrupt-parent for this device is a phandle for gpio0 node
and the first value of interrupts property is 23. The second value of the interrupts
property is used to describe the behavior of the interrupt, i.e. the trigger type and
level, which can be found in the AM335x TRM. See here for more information about
device tree interrupts.

The device tree bindings for all the hardware components must be consolidated to
form a complete device tree so that the system can function properly. While this may
seem like a daunting task, device trees are seldom built from scratch. The next
section will discuss modification and reuse of existing device trees.

5
OSD335x Lesson 2: Linux Device Tree
Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

1.3 Modifying an Existing Device Tree
For an embedded Linux system, a device tree is generally a complex data structure
requiring several hundred nodes to describe the entire system hardware architecture.
Creating a device tree from scratch and validating it can be a daunting and time-
consuming task. Therefore, you should look to reuse device tree include files and
modify an existing device tree to meet your requirements.

A device tree for the Lesson 2 board can be created by modifying the published device
tree from the OSD3358-SM RED board. You can download the device tree files here.

The OSD3358-SM RED board has several components that do not exist on the Lesson 2
board. Those components will need to be removed from the device tree to make it
suitable for the Lesson 2 board. However, before doing this, you need to understand
how the OSD3358-SM RED board device tree is structured.

The device tree consists of 2 files:

• osd335x-sm.dtsi – This is a device tree include file that describes all the
hardware that is present in the OSD335x-SM System-in-Package (SiP) device.

• osd3358-bsm-refdesign.dts – This is the main device tree file that includes the
previous file and adds nodes corresponding to the hardware that is specific to the
OSD3358-SM-RED board.

Dividing the device tree into separate files helps with code reusability. Since the
internal hardware of the OSD335x-SM remains the same irrespective of where it’s
used, the device tree corresponding to it can be put into an include file (osd335x-
sm.dtsi). Then, this file can be used in many device trees that utilize the OSD335x-
SM.

When using device tree include files, it is important to understand the status of each
node (i.e. after loading the include file, is a given node in an okay or a disabled
state). The main device tree file (osd3358-bsm-refdesign.dts in this case) can then
enabled or disable nodes depending on the system hardware. The nodes with the
preceding ampersand (&) in the main device tree file are referencing nodes that are
already declared in osd335x-sm.dtsi.

At this point, the OSD3358-SM-RED board’s device tree can be modified to match the
hardware on Lesson 2 board. The nodes and node references that do not correspond
to the Lesson 2 board can be removed in osd3358-bsm-refdesign.dts. Figure 3 lists
all the nodes that are present in this file. The nodes that are marked with X should be
removed.

6
 OSD335x Lesson 2: Linux Device Tree

Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

Figure 3 osd3358-bsm-refdesign.dts before modifications

7
OSD335x Lesson 2: Linux Device Tree
Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

After the modifications, the osd3358-bsm-refdesign.dts will look like Figure 4. Since
it now reflects the Lesson 2 hardware, the file can be renamed to osd335x-
lesson2.dts.

Figure 4 osd3358-bsm-refdesign.dts after modifications to reflect Lesson 2 hardware

You can directly download the osd335x-lesson2.dts device tree file for the Lesson 2
board here. The .dts device tree source files are human readable and can be viewed
in your favorite text editor. Next, this source file will be converted to a Device Tree
Blob or .dtb file, i.e. a binary file that is smaller and easier to parse by the Linux
kernel. For the OSD335x Family of devices, Robert Nelson’s Device Tree Rebuilder
can be used to compile the device tree source. You can download it here.

8
 OSD335x Lesson 2: Linux Device Tree

Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

The steps to compile and use the new device tree on the Lesson 2 board are as
follows:

1. Download the latest OSD3359-SM RED Debian image and flash a microSD card
with it. Boot the Lesson 2 board from the microSD card.

2. Download and copy the dtb-rebuilder to your microSD card.
3. Copy the osd335x-lesson2.dts and osd335x-sm.dtsi to dtb-rebuilder/src/arm

directory.
4. Use the make command to build the files.
5. The osd335x-lesson2.dtb file will be in the dtb-rebuilder/src/arm directory

once the build process is complete.
6. Move the osd335x-lesson2.dtb file to /boot/dtbs/<kernel version>/ directory

to make it available to the Linux Kernel during boot.
7. Configure the boot configuration file (uEnv.txt) to use the new device tree:

a. Open the /boot/uEnv.txt configuration file using a text editor. E.g.,
nano /boot/uEnv.txt

b. Comment out the existing dtb variable and add the line dtb=osd335x-
lesson2.dtb as shown in Figure 5. Save the file.

c. Reboot the board using the command: sudo reboot -h now.

The board should now boot using the new device tree.

Figure 5 Setting Kernel Device Tree file in uEnv.txt

9
OSD335x Lesson 2: Linux Device Tree
Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

Perk:

To understand what was loaded during the boot process, you can look at the boot
messages on the serial console (by default UART0) during boot or in the system
logs after boot. This can help you debug any boot issues.

Caveat:

If you get time skew warnings while building the device tree, run the touch *
command in the dtb-rebuilder directory and the dtb-rebuilder/src, dtb-
rebuilder/src/arm sub-directories to update the file modification time of all files
to resolve the warning.

If there are any syntax errors in the device tree, the compiler will indicate the line
number where the error was found. You can use this information to track and
resolve the error. The most common error is phandle references to non-existing
nodes. Since some nodes were deleted while modifying the device tree, any
references to the deleted nodes might cause errors. Make sure to delete all
phandle references to the deleted nodes to fix any errors.

10
 OSD335x Lesson 2: Linux Device Tree

Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

1.4 Pin Multiplexing
The OSD335x family of devices provides access to all 123 signal pins of the AM335x
processor. Each of these signal pins can have up to seven (7) different functions, or
modes, which allows a given peripheral within the AM335x to be multiplexed to
different pins. The pin modes for each pin can be found in the Pin Attributes table of
AM335x datasheet (the OSD335x family uses ZCZ package of AM335x when referring
to pin names / pin functionality). The RESET REL. MODE column of the table shows
the default mode that will be assigned to the pin after the processor is released from
reset. If this mode is not the mode required by system, you will need to add
information to the device tree to set the pin mulitplexing so that the connected
components interface properly with the AM335x processor.

For example, below shows a device tree snippet from the am33xx_pinmux node of the
osd3358-bsm-refdesign.dts file. The pinctrl-single driver is used to set the
appropriate pin configuration (more information about pinctrl-single driver can be
found here). The AM33XX_IOPAD macro (which can be found in the dt-
bindings/pinctrl/omap.h file, which is included by the dt-bindings/pinctrl/am33xx.h
file, which is included by the osd335x-sm.dtsi file) helps configure each pin (more
information about AM33XX_IOPAD macro can be found here).

&am33xx_pinmux {
 user_leds_default: user_leds_default {
 pinctrl-single,pins = <
 AM33XX_IOPAD(0x854, PIN_OUTPUT_PULLDOWN | MUX_MODE7)
/*gpmc_a5.gpio1_21 */
 AM33XX_IOPAD(0x858, PIN_OUTPUT_PULLUP | MUX_MODE7)
/*gpmc_a6.gpio1_22 */
 AM33XX_IOPAD(0x85c, PIN_OUTPUT_PULLDOWN | MUX_MODE7)
/*gpmc_a5.gpio1_23 */
 AM33XX_IOPAD(0x860, PIN_OUTPUT_PULLUP | MUX_MODE7)
/*gpmc_a5.gpio1_24 */
 >;
 };
};

You can find the absolute physical address of the pins, which is required for the
macro, in the CONTROL_MODULE REGISTERS table of AM335x TRM. In the table,
each signal pin name is prefixed with conf_. For example, the absolute physical
address of the GPMC_A5 pin, 0x854, is shown in Figure 6.

11
OSD335x Lesson 2: Linux Device Tree
Rev.1 5/30/2018

Octavo Systems LLC
Copyright 2018

Figure 6 Physical Address of GPMC_A5

In addition, you can also use TI’s PinMux Tool to ensure the pin muxing of your pins
do not conflict with each other (You will need a TI user account to use the tool). You
can watch the TI PinMux Tool getting started video here to learn more about the tool.

For any questions or concerns, you can reach us at:
https://octavosystems.com/forums/

